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We develop an idea of Chetaev to the effect that if the measurement errars are
sufficiently small, we can find the best conditions for the experimental investi-
gation of a material object, using the property of instability of its mathematical
model {1], We show that in a number of cases we can significantly weaken the
requirements on the accuracy of measurements when experimentally seeking new
properties of the object, other than the properties of its known mathematical
model, To do this it is sufficient to use a property of the mathematical model
stronger than instability, In the paper we call this property the property of com-
plete lability., We have found the sufficient conditions for complete lability,

We introduce the notion of the degree of lability, We consider the problem of
controlling the degree of lability, We apply the results obtained to two systems:
the mathematical model of the struggie for existence between two biological
species and the problem of power-off entry of a spacecraft into a planetary
atmosphere (passive descent),

1, We consider a class of objects whose motion can be described by the system of
differential equations
g drfdt = X (8, 2), te<t<t, (1.1)

Here z = (x,,..., Z,) is a vector in a real n-dimensional linear normed space R."
with norm || z|| = max;|z;|. t is the time, ¢, is the initial instant, {o &= (—o0, o),
t, is either a number on the halfline ¢ > ¢, or-the symbol oo.

Let Vobe a givensetin R.™ of the initial states z (t,) = z,; z (t) = f (¢, Zo»
o). to <t <<t,, zoe= V, is a solution (a trajectory) of system (1.1) in R,™ X 1,
where I = {t:t, <t <t,)}. We assume that X(t, z) satisfies the conditions which
ensure the existence and continuity of the function f (2, Z¢, to) for all { = I and for’
all Zo = Vo.

Following Chetaev [2] we shall "regard a concrete phenomenon as a theoretical phe-
nomenon perturbed by small forces not fully accounted for and by deviations of the ini-
tial conditions”, Furthermor=, following the recommendations in {1] we delimit the
structure of the perturbing forces: we assume that the difference of the material object's
behavior from that of its model (1,1) is cauwsed only by the difference in their initial
states, Consequently, if f (Z, Z, £), %o << t <C i, is a theoretical wajectory, the
trajectory of the object's model (1.1), then f (¢, x,*, to), 2o<<t << {, is the Tue
trajectory of the object, while Az, = Z,* — Z¢ is the perturbations, not fully accounted
for, of the initial state of the model, equal to the deviation of the object’s wue initial
state z,* from the theoretical initial state, i, e, the initial state z ({;) = Zo of its
model(1.1).

It is clear that when arbitrarily small deviations Ax, of the object's initial state
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* from the initial state Zo of its model (1.1) lead to an arbitrarily large increase of
the norm of the difference || f (£, Zo*, to) — f (£, Zo.20)|| as time ¢ goes on, the dif-
ference between the object’s behavior and that of its model can be detected even by
crude imprecise observation means, In this case favorable conditions arise for the ex-
perimental detection of those properties of the object which differ from the properties
of its known model (1.1), including its new unexpected properties, This arbitrarily
strong subjection of model (1, 1) to small perturbations of its initial state r,is a swonger
property than the Liapunov instability of its trajectories, since here we are dealing with
an unbounded increase in the distance between the states of system (1.1) in R_" on the
unpertutbed and on the perturbed trajectories,

Definition, A majectory C = {f (t. Zo, to)y Lo Nt <Py, Zo & Vo) issaid
to be completely labile relative to set V, if for any arbiwarily large number ¢ > 0 ,
and for any arbitrarily small number § >> 0, among the set of rajectories C there
exist at least two trajectories

f (¢, (o) L)y | (E, (Zo)as Bo)s Lot << By (Zo)1s (To)e = Vo

and an instant !, = £, (g, 8, (Z¢),, (ZTo)a), Lo << t; << Iy, Such that
3) 0. <l (o)1 — (Z0)all < 8, (b) |1 f (2, (Zo)y- L0} — | (t1s (Za)as L)l > €.
Here and later f, either is 2 number on the halfline ¢ > t, or is the symbol oc.
Theorem 1. Let the right-hand side X (¢, ) of system (1.1) be a function of
¢t and 7, continuous together with its partial derivatives with respect to ¢ and z in
R™X I, where I = {t:t, <t <<t,}. We denote
t n
L (tv IO; to) = S
tyimel
Then in order for rajectaries C to be completely labile relative to set ¥V, it is suffi-
cient that

t))dT (1.2)

L (t, 2o, ty) > as t—1, (1.3)

uniformly with respect to 2o & V.

Proof, Let Z,be any point from V,. From the theorems on existence, uniqueness
and continuous dépendence of trajectories C on Z, it follows that the mapping T : z =
f (¢, Zo, to)y Zo & V,, is continuous and one-to-one for every ¢, t, <t <<t, . By
hypothesis V, is an open set, therefore, there exists a set of spheres

St (Bo) = {Zo: [ To — Zo| <3 8o}y Ss (Zo) = Vo

where §, > 0 is any number not exceeding a specified number § >> 0 no matter
how small the latter may be, The continuous function f (t, z,, ¢,), 2o = Ss, (Zo),
defines the mapping T, of the sphere Sy, (Z,) onto the set S, = T, (§,, (z,)),
where S, is a closed connected set (a connected compactum), bounded for each fixed
t, to < t < ty, whose diameter equals p;.
We denote the Jacobian
d(z1y...,2)

J(¢ zx)=
According to Liouville's theorem [3]

t n

J(t9 f (ty Ty, tO)) = eXp S

toim=l

t,)) dt (1.4)
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Therefore, J (t, f (2, Zo, to)) == 0. Let |S, | be the volume of set So,- Taking the
continuity of J (¢, 1 (£, Zo, ,)) on Z, into account we obtain

[ Se,| = S dz = S J(t, f(t, Zo, to))dzo=| S5, (Zo) | J (2, f (¢, &, 2o)) (1.5)
So, SpEo) ’

Here a = a (t) is some point from S (Z,), fixed for a fixed ¢, 1o << ¢ < ly- From
(1. 4),(1. 5) it follows that

| S5, 1=ISs ()] exp S o - Xi(5 f (0, ) d (1.6)
ty izl
The diameter p; of compactum S,,t is
Pr= sup |r—z'|=]|a'— %] 1.7y
X, x’esp

where z* and z* belong to the boundary I (S,)) of set S, by virtue of the continuity
of the norm jjz— z’||. The preimages of the poims z,

(@oh = T1" (@), (Zo)e = T7" (2%)

where T;~! is a continuous mapping, inverse to T';, also belong to the boundary
T (Ss, (Zo)) of the sphere S5 (Z,). Therefore

[ (Zohr — (Ta)e | < 8o << (1.8)
Note that
= |85, < (00" 1.9)
With due regard to notation (1, 2), from (1, 6), (1. 9) we obtain the estimate
p: > I SS. (Io) Il/ﬂ exp[L (t,a,t)/n], aec Sﬁe (Zo) = Vo (1'10)

The theorem's assertion follows from inequality (1.10) and condition (1. 3)..
->
2. We inttoduce the function of positive terms

h(t, 8, 7o, tg) = < )""x)/m (n!1)™2/m 8y exp [L (2, 4, L) / 11}

0, n=2,4,8,... .
=11, n=35,1,... 2.1

Here nl! is the product of all positive integers of the same parity as 7 but not exceed=
ing n,

Theorem 2. Let the right-hand side X (£, Z) of system (1.1) be a function of ¢
and z, continuous together with its derivatives with respect to ¢ and z in R.® X [,
Then the wajectories ' are completely labile relative to set ¥, if for any (arbitrarily
large) number € >> O and for any (arbitrarily small) number & >0 there exists: (a)
an initial state Z, & V,, (b) a sphere Sy, (Zo) = V, of diameter §,<Z §, (¢) 2n ins-
tant £, = ¢, (g, O,), to << t; <!, such that

Rk (t,, 8,, b, ty) > & for each point b = Sy, (Z,) (2.2)

Proof. Let usreturn to (1,10), where the volume | Ss,(Z;) | of the sphere S, (Z,)
of diameter §, can be computed by Jacobi's formula [4]; as a result (1,10) takes the form
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Pt > h (t' 60! a, tO)’ a= S5° (‘,EO) (2'3)
Then it is easy to complete the proof of the theorem by keeping (2. 2), as well as (1, 7),
(1. 8) and (2, 3) in mind,

Note 1, The quantity p; on the left-hand side of (2, 3) characterizes the error in
the determination of the state of system (1,1) at the instant ¢, caused by the error §,
with which its initial state is specified, while % (t, 8,, a, tg) in(2.3) characterizes
the minimum level of this error,

Note 2, The use of inequality (2, 2) for the detection of completely labile trajec~
toties of system (1,1) presupposes that the function L (¢, o, Zo) either can be com-
puted exactly or is effectively bounded from below,

3, Let us consider the mathematical model of the szuggle for existence between
two biological species [5], taken as the ariginal one in [6] and relating to a broad class
of so~called models of evolution [7]

d. dz
__...:tl = 11 (&1 — T1Z2), —d—:- = — I3 (2 — T271), 1 >0 3.1)

Here €1 &3, 71, 7 are positive numbers; z,, z, are the coordinates of the vector z =
(21, Z3) € Ry?, 39 = (2w, 240) is the state of system (3,1) at the instant ¢t = 0; V, =
{zo : 0 < 249, 230 < B}, B > 0 is a number,

Let us show that the rajectories of system (3, 1), starting off on Vo at ¢t = 0 are com-
pletely labile relative to V,. In order to make use of Theorem 2 it is necessary to find
the quantity t
L (2, 2o, 0) = S (& — N2 (¥) — &2 + Tox1 (7)) d¥Y (3.2)

0

() =f (2,20, 0), 2 () = f2 (8,25, 0), t 20, zp € Vo
Here z, (f), z, (¢) is the solution of the system (3,1)., With due regard to (3.1), the
integrand in (3, 2) can be represented as

(&1 = 122 (&) — & + V22, (1) dt = doy/z; + dzy/z, (3.3)

Substitution of (3, 3) into (3, 2) yields

Lt 0 =1n | 2020 34
On the phase plane R,*> we construct a circle of diameter §, < B
’Sa. (7o) = -{xo : (:cm — ’%iay -+ (xgo -—mz—’: ! a)z < (m?;ni a)z} (3.9)
21, m>1, 0<a<imB/ (m —1)
Using (3. 4), from formula (2,1) for n = 2 we find
h(t, 6n, 70, 0) = 0.8862260 ... Z—1 o [ hit z f}oi:‘ Z 0) l 3.6)

2o € Sy (To)
Let b= (b,, b;) be any point of Sy, (Z,). From (3, 5) it follows that
—1 \2
bibe < (m - a> 3.7
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The number a > 0 in (3, 5) can be chosen so small that on the plane R? the singular
point (g, / Vo, &y / V1) € O3, (%o)-

It is known from [5] that Egs, (3.1) have a unique singular point (g5 / v2, &,/ V1) in
the quadrant z; > U, z, > 0, which is a center, the phase curves of system (3,1) in this
quadrant are all closed, and the time variation of the phase coordinates z;, z, takes
place by a periodic law, Consequently, all the phase curves of system (3, 1) should swr~
round the point (g3 / ¥, &/ ¥,) in the quadrant z; >0, z, > 0 (otherwise by the Bend-
ixson theorem [8] there would be a singular point other than (e, / V., €&/ V1) in this
quadrant), Therefore, for each point z, € S5, (Zo) there exists an imstant ¢, = ¢, (2o),
0 < t; < oo, such that

fi (b, 290 0) > €3 / 7y, fa (ty, 2o, 0) > €1/ 1y (3.8)
The functions f, (t, o, &), f2 {t, Zo. %) - depend continuously on z, & Vo, therefore, for
any fixed o > U there exists an integer [, = I, (2) > 1, depending on &, such that for
any circle (3, 5), where > |, = I, (z) the inequalities (3, 8) are fulfilled for any point
zo = b = (b}, by) & Sy, (Z,). Consequently, from (3, 8) we have

f1 (1, 6, 0) /o (81, b, 0) > &8/ 11V, (3.9)

Then, with due regard to (3, 7), (3. 9), from (3. 6) we obtain
mejes 1

h (t1, Bo, b, 0) > 0.8862269 . . . m -
Consequently, whatever the number ¢ > 0, by choosing « > 0 sufficiently small we
can always ensure the condition 4 (¢,, 8o, b, ) >» & for any point b = (b,, b)) € Sy,
(2,) . According to Theorem 2,1, this signifies that wajectories C ={(f, (¢, z,. 0), 1, (3,
o, U)), £ 0, 20 € I} are completely labile telative to V,. It is necessary to note
also that the diameter and the coordinates of the center of the circle (3, 5) are arbitra-
rily small as o — 0, therefore, the origin of the phase plane R;® is a point of conden-
sation of those pairs of points {(zo);, (Zo)e} the distance between which at the instant
t = 0 is arbitrarily small, whereas the distance between the phase trajectories of system
(3.1), issuing from each pair of these points, becomes larger than any £ > 0 as ¢ increa-
ses,

4, Let all the conditions of Theorem 1 be fulfilled, excepting condition (1, 3) which
we do not take into account here, We fix a certain instanton | = {t: £, <<t << t,'
We consxder the set V, = T, (V,), Vo < R." and the sphere S5 (2) = {z :|lz —
Il << ~6 ¢} with center at any point Z & V,, where the number 6, > 0 is chosen
such that S 5, (£) < V;. By virtue of the assumptions made, for each point z & S 3,
(z) there exists a unique image z, = 7;* (z), where T, iz, =f (¢, <, 1),
ty <t < ty, £ & Vy. Let S;, be the image of the sphere Sy, (2), S8, = T/

(83, (2)), where &g is tne diameter of set S5, We denote

pv (t, Zo, to) = llmsl_.o (60 /6‘ (—k.l)

where Io =/ (fp, I. 1), 8, is the diameter of sphere S5, (Z), &, is the diameter
of set S5, The quantity p (¢, Ty, ty) characterizes how strongly the wrajectories of
system (1. 1), starting off in a neighborhood of point Z,, condense i.e come together
by the instant 7, The larger the p (¢, Z,, f,), the higher the degree of condensability
of the majectories, '
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Let us find a lower bound for M (Z, Z,, £,),where I, is any point of V,. To do this,
by analogy with (1, 5) we can write

1Sa] = 17 (¢, 7t 2, 21| S, (@) (4.2)

where @ = a (£) is some point of Ss,. If we take (1.2), (1. 4) into consideration, then
(4, 2) can be rewritten as
| Ss,| = | S5, (2) lexp [— L (t, a, t)] (4.3)

We keep in mind that (§,)" > |Ss,|; we compute the volume | S5, (Z)| by Jacobi's
formula [4]; then, with due regard to (4,1), from (4, 3) we obtain the estimate

0, 3> ()T (@ exp — Ltz )/ )

0, n=2,4,6,...
"={1, n=23,5T.... (4.4)
From (4, 4) it follows that if
L (t, Zg, tg) > — 00 as t—>1y (4.9)
then '
B, g to) >0 a8 -ty (4.6)

Consequently, one and the same quantity L (¢, Zo, f,) characterizes, on the one hand,
the complete lability of the wajectories of system (1.1), when L (2, z4, ty) =
(Theorems 1, 2), and on the other hand, the unrestricted condensability of the rajecto=-
ries of system (1.1), when L (¢, z,, t,) — — oo (relations (4. 5),(4.8)), Taking into
consideration the singular role that the quantity L (¢, z,, t,) plays in all the preced-
ing discussions, we will call the quantity L (¢, Zo, Zo) the degree of lability of sys-
tem (1.1).

5. Let us consider the motion of a spacecraft at its power-off enwry into a planetary
atmosphere (passive descent), Under specified assumptions, the equations of planar
motion of the spacecraft can be written as [9]

dH a0 C Az, ) 1
= =408 <”°—z>7;=‘af——;;:-:[s——r<vo—=>=]

Az, HY= [Ea%s:::i (vg — 2) e”'H]-l , K<z Lvo—v (5.1)

Here, in (obviously unessential) contrast to [9] we have chosen as the independent vari-
able, instead of v ,the scalar quantity z = v, — v, monotonously increasing with time,
where v, = v (to) is the velocity of the spacecraft at the initial instant ¢ = £, v = v (t)
is the velocity of the spacecraft at the current instant ¢ ; the values of z and ¢ are in
one-to-one correspondence, As regards the other notation in (5,1), H is the altitude
of the spacecraft above the planet's surface, 6 is the angle of inclination of the craft's
trajectory relative to the local horizon plane, A is the logarithmic gradient of the
atmosphere 's density, § and m are the characteristic cross-sectional area and the mass
of the craft, ¢, and c; are the lift and drag coefficients (*),respectively, p (0) is the

*y Editor's Note, See footnote on page 39,
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atmosphere density at altitude H = 0, r is the planet's radius, g is the acceleration
due to gravity, .

The actual wajectories of the spacecraft can differ from the calculated ones for 2
number of reasons whose analysis leads to the dispersion problem, One of the reasons
for the dispersion of the trajectories is the perturbation of the initial state of system
(5.1), H (o) = H,, 8 (t,) = 0,. Let us estimate the condensability of the trajectories
of system (5.1) with the aid of the numerical measure (4. 1) of the condensability of
the rajectories and of the relation (4.4). To do this we first compute the degree of
lability of system (5.1) by formula (1.2). Keeping in mind the first equation in (5.1),
the integral to be computed can be reduced to a quadrature, taken in finite form

TV 2z
Lz Ho, 80 0) = 1 S A H@)0@dz= A S dH (v) = A [H (z; Ho, 8) — Ho]  (5.2)
0 0
Here H (z) = H (z; H,, 60) Is the altitude corresponding to the current value of 3z, If
H (z; Ho, 80) < Ho, then L (z; Hg, 8,; 0) < U. According to the meaning of the quan-
tity B (25 Ho. 8y; 0) and to the bound (4. 4) this signifies that the very fact of the craft's
descent in the planetary atmosphere renders a stabilizing effect which consists in a les-
sening of the perturbations of the trajectories of system (5.1), caused by the perturbations
of its initial state (H,, 8,). From (5.2) it follows that this stabilizing effect is the -
greater, the greater is the density gradient 5 whereas the degree of lability of system
(5.1), L (z: Ho. 80 0) does not depend upon the form of the trajectories of system
(5.1) but is determined solely by altitude difference H (3; Ho, 60) — H,. For example,
let H (z; H,, 8,) — Ho= 80 km. For a descent onto the Earth, A == (i/519)m™. In this
case L (z; Ho, Yo; 0) = 11.16, and by formula (4.4) for n = 2 we have pu (z: Ho, 8y
0) > 235. Returning to (1.2), (4. 4) and (5.1), we can note that there exists an additional
possibility of influencing the quantity L (z; H,, 8,; 0) and the lower bound for p (z: H,
8o: 0), which consists of using as control functions the lift-drag ratio cy / ¢x and the
drag coefficient ¢x (*) as functions of # and 6.

6. Mathematical models of control processes often are given by equations of form

1.1) in which
@D w Xt z) =F (& 2, u(t) (6.1)

Here F (t, z, u) is a function of I, &, U, U = (U,..., U,) is a vector in a real r
dimensional linear normed space R,”, u (Z) is the control (the conwol function),’

When experimenting with a concrete material object it is often required to bring out
new properties of this object,different from the properties of its model (1,1), (6.1), as
well as to define more precisely the boundary and the region of applicability of this
model, By forcing the growth of the degree of lability of system (1.1), (6. 1) with the
aid of specially selected controls and by using precisely these controls when experimen-
ting with the concrete material object, we can hope to establish in the quickest way the
difference between the behavior of this object and of its model,

Let each of the controls & = u (¢), t > t,, belonging to a certain admissible con-
wolset U = {u (#), t > t,)}, ensure the fulfillment of all the conditions of Theorem

*y Editor's Note, English symbols for the lift-drag ratio, drag coefficient and lift
coefficient are as follows: ¢, /cn, C, and C,, respectively,
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1 on the function X (¢, z) excepting condition (3. 1) which we do not take into accout
here, Among the conwrols in U we can choose a control such that the system (1.1),( 6.1)
achieves a given magnitude of the degree of lability L (t,, Zo t,) = B, where B

is a specified number, in the minimal time £, — Zo, where

t+ = mi)lu(j)EU t (62)

It is obvious that the desired control & = U (t), f, << ¢ << f, can be found from the
functional equation

minynaptlt n
§ 2 oi. 'Y" (T' f (Tv Zgs to)) dt = B (6.3)
o i=1 i

Here the function z (£) == (¢, o, to), to < t << B, To = V), satisfies system (1.1),
(6.1) in the presence of the given z, & V, and of the desired u = u, (2), t, <
1< t,.

All the preceding discussions can be extended to the case of piecewise~smooth con-
wols by the method of matching,

If the values of the control function belong to a compact closure in R,’, the solu-
tion of the functional equation (6. 2) can be reduced to the known time optimal prob-
lem [10] with an additional integral constraint of the isoperimetric type., Indeed, the
solution of problem (8. 2) is equivalent to the problem of minimizing the integral

ty
tl = S dT + to
te
subject to two constraints : the differential one (1.1),(6.1) (under the condition that the
initial state z (t,) = Z, belongs to set V,, while the conwol ¥ = U, ,t>=1t,,
belongs to set [) and the integral one (the isoperimetric condition)

iy n
d
§ D == Xi(r f(r.anto)dT = B
to imx] 1
The author thanks V, V. Rumiantsev for valuable advice and remarks, as well asall the
participants of the siminar on analytical mechanics at the Moscow State University for
discussing this work,
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A class of exact solutions of a system of equations of electrohydrodynamics is
studied for which the electric current is directed along streamlines of the hydro-
dynamic flow. In the. two-dimensional case the sclution is written down expli-
citly, It is shown how to construct other exact solutions for which the collinear-~
ity condition of the electric current density and velocity vectors has not been
satisfied, by using the solutions obtained, as an illustration, an exact solution

for the flow of a unipolarly charged flnid in a channel with electrode-walls is
constructed, It is shown that for a particular kind of hydrodynamic eddy current
the solution of the two-dimensional system of equations can be reduced in some
cases to finding the solution of a system of ordinary differential equations.

1, Ler us examine the stationary flow of a unipolarly charged fluid. The paramete:
of the electrohydrodynamic interaction is assumed infinitesimal, A hydrodynamic
stream of jdeal incompressible homogeneous fluid has the potential Y* =— grad O*.
Ohm's law has the form j* = ¢* (V* —- pE*), where b = const is the mobility,
Let us introduce dimensionless quantities by means of formulas

z=lEy=1In, z=1f ¢* =9 O =uld

* Enlin .
" = b (1.1
where ©* is the electric field potential E* = — grad @*. Using the potentiality of

the electric field and the velocity field, let us introduce the total potential X =@ + @
The equations of electrohydrodynamics are [1]

AD =0, div(ggrad ¥) =0, Ay = —¢ (1.2)



