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We develop an idea of Chetaev to the effect  that if  the measurement errors are 
sufficiently small, we can find the best conditions for the experimental  investi- 
gation of a material  object, using the property of in~tabil/ty of its mathemat ica l  
model [1] .  We show that in a number of cases we can significantly weaken the 
requirements on the accuracy of measurements when experimentally seeking new 
properties of the object, other than the properties of its known mathemat ica l  
model. To do this it is sufficient to use a property of the mathemat ica l  model 
stronger than instability. In the paper we call  this property the property of corn° 
plete lability. We have found the sufficient conditions for complete lability. 
We introduce the notion of the degree of lability. We consider the problem of 
controlling the degree of lability. We apply the results obtained to two systems : 
the mathemat ica l  model of the sla'uggle for existence between two biological 
species and the problem of power-off enu-y of a spacecraft into a planetary 
atmosphere (panive de~.ent). 

I .  We comider a ¢!a,a of objects whose motion can be described by the system of 
differential equations 

dz/dt  = X (t, z ) ,  to <~ t < t ,  (t.1) 
Here x ---- (x z . . . . .  x . )  is a vector in a real n-dimensional  linear normed svace R~ n 
with norm [Izll ---- m a x t l x t l ,  t is the time, to is tile initial instant, t o g  ( - - o o ,  oo), 
t .  is either a number on the halfline t > to or  the symbol oo. 

Let V o be a given set in R ~  of the initial states x (to) ----- Xo; I (t) = / (t, zo, 
to), to ~ t < t . ,  x o ~  V 0 is a solution (a trajectory) of system (1.1) in Rx"  X I ,  
where ] = {t : to ~<~ t < t ,  }. We assume that X(t, x) satisfies the conditions which 
ensure the existence and continuity of the function f (t, Xo, to) for all i ~ I and for 
all  xo ~ V0. 

Following Chetaev [2] we shall "regard a concrete phenomenon as a theoretical phe- 
nomenon perturbed by small  forces not fully accounted for and by deviations of the ini-  
t ial  conditiom". Furthermc~., following the recommendations in [1] we delimit  the 
structure of the perturbing forces : we assume that the difference of the material  object 's  
behavior from that of its model (1.1)  is caused only by the difference in their initial 
states. Consequently, i f  / (t, x0, to) , ~0 ~ t < t .  is a theoretical trajectory, the 
trajectory of the object 's  model (1 .1) , then / (t, x0*, to), t o ~ t  < t .  is the true 
trajectory of the object, while Ax 0 = x0* - -  ;% is the perturbatiom, not fully accounted 
for, of the initial state of the model, equal to the deviation of the object 's true initial 
state Xo* from the theoretical initial state, i . e .  the initial state • (to) = Xo of its 
model ( I .  I ) .  

It is clear that when arbitrarily small deviations Axo of the object 's initial state 
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x0* from the initial state Xo of its model (1.1) lead to an arbi~arlly large increase of 
the norm of the difference Itf (t, xo*, t o ) - - f ( t ,  Xo. to)ll as time t goes on. the dif- 
ference between the object's behavior and that of its model can be detected even by 
crude imprecise observation means. In this case favorable conditions arise for the ex- 
perimental detection of those properties of the object which differ from the l~per t ies  
of its known model (1.1). including its new unexpected properties. This arbitrarily 
strong subjection of model (1.1) to small perturbatiomofils initial state Xo is a suonger 
]xopert~/than the IAapunov imtabiliry of its =ajectories, since here we are dealing wir~ 
an unbounded increase in the distance between the states of system (1.1) in R~n on the 
unpert~bed and on the perturbed trajectories. 

D e f i n i t i o n .  A = a j e c r ~ /  C = {f (t, xo, to), to ~ t < t , ,  x 0 ~ V0} is said 
to be completely labile relative to set V 0 if for any arbitrarily large number ~ ~ 0 . 
and for any arbt~arlly small number 5 ~ 0 ,  among the set of trajectories C there 
exist at least uqo ~ajecr~des 

f (t, (xo)x, to), f (t, (x0)2, to), t o e  t < t . ;  (Xo)l, (Xo)2 ~ V0 

and an im~ant t~ - -  t 1 (6, 8, (Xo)x, (x0)~.) , to < tl < t . ,  suCh that 

a) 0 < II (XO)l--  (Xo)e.J] ~ 5, (b) Jl f (el, (Xo)l, to) - -  / (tl ,  (zo)2, to) l[ > e. 
Here and later t .  either is a number on the halfline t ~ to or is the symbol oc.  

T h e o r e m  1.  Let the right-hand side X ( t ,  x) of sy~em (1.1) be a function of 
t and x, continuous together with iu  partial derivatives with respect to t and x in 
R;) ' × I ,  where I = {t : to ~ t < t .  }. We denote 

t 
a 

L (t, xo, to) = !.,-1 ~ X i  (~, f('~,xo, to))d'c (i  .2) 

Then ill order for ~ a j e c ~ i e s  C to be completely labile relative to set Vo, it is suffi- 
cient that 

L (t, Xo, t o ) - ' * ' ~  as t - - ~ t ,  (1.3) 

uniformly with respect to Xo ~ V0. 
P r o o f .  Let ;r o be any point from Vo. From the theorerm on existence, un/qucneu 

and continuous dependence of trajectories C on ;r~ it follows that the mapping Tt : x = 
f (t,  ;co, to).  Zo ~ Ve, is continuous and one-to-one for every t, to ~ t < t . .  By 
hypothesis V o is an open set. therefore, ~heae exists a set of spheres 

(Zo) = {Zo :ll Zo - Zo x/,  5o}, (Zo) = 

where 50 ~ 0 is any number not exceeding a specified number 5 ~ 0 no matter 
how small me tatter may be. The continuous function ] (t,  Xo, to), Xo ~ Ss.  (Zo), 
defines the mapping T t of the sphere ,.~. (Zo) onto the set Sot --- Tt  (S~. (Zo)), 
where S~ is a closed connected set (a connected compactum), bounded for each fixed 
t, to ~ t  < t , ,  whose diameter equals Or. 

We denote the Jacobian 
0 (z~ . . . . .  z.) 

J (t. z)  = o . . . . .  

According to Liouv/lle's theorem [3] e . 
IY, o 

J (t, l (t, Xo, to)) = exp ~ Xi  (~, l (% :co, to)) d'~ (1.4) 
t~ tu l  
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Therefore, J ( t, f (t, Xo, to)) ~ O. Let ]Soil be the volarne of set Sp t. Taking the 
continuity of J (t~ I (t, Xo, to)) on x0 into account, we obtain 

[ So t I ---- S dx ----- ~ J (t, f(t, xo, to))dxo =1S~. (z0) I J (t, I (t, a, to)) ( t .5 )  
SP t S~(~,) 

Here a = a (t) is some point from Sr~ (~0), fixed for a fixed t,  to ~ t ~ t . .  From 
(1.4), (1.5) it follows that 

t 

X,(=, /(*,a, to))d'  (t.6) 

The diameter Pt of compactum S~t is 

x, :d~_Sp! 

where x ~ and x ~ belong to the boundary F (Sot) of set S~t by virtue of the continuity 
o f t h e n o r m [ ~ - x ' [ [ .  The preimages of the poin~ x ~, x ~ 

(Zoh = / 7 ,  (zl), (zoh = (z') 

where Tt -x is a continuous mapping, inverse m Tt, also belong to the boundary 
F (Ss. (~0)) of the sphere S~o (50). Therefore 

l (zoh - (Zoh U < < 8 (i.8) 
Note that 

ISle[ ~ (PrY' ( t .9 )  

With due regard to notation (1.2),  from (1.6). (1.9) we obtain the esrlmare 

pt;>[St, .(¢o)lZ/"exp[L(t,a,  to)/n], a E S t . ( X o ) ~ V  o (1 . t0)  

The theorem's assertion follows from inequality ( I .10)  and condition ( 1 . 3 ) .  
o 

2.  We in~oduco the function of Positive terms 

(n-x)/~ (nil -1/,', h(t, 6o, zo, t o ) = (  2 ) ..1 6oexp[L(t,  zo, to)/n] 

0, n ~ 2 , 4 ,  6 , . . .  
U = 1, n •= 3, 5, 7 . . . .  ( 2 . t ,  

Here nil is the p~oduct of all Positive integers of the same parity as n but not exceed- 
ing n. 

T h • o r • m 2.  Let the right-hand side X (t, x). of  system (1.1) be a function of t 
and x, continuom together with ils derivatives with respect w t and z in R= n X I .  
Then me Izajeccor/es C are completely labile relative to set V o if  for any (arbitrarily 
large) number e ~ 0 and fox any (arbitrarily small) number 6 ~ 0 enere exists : (a) 
an indtial state ~o ~ Vo, (b) a sphere Ss, ( ~ o ) ~  Vo of diameter 6 o ~  6, (c) an ins- 
tant t l -=-- t l (e  , 60), t o <  t x < t , ,  suchthat  

h (t~, 5o, b, to) ~ e, for each point b ~ S~  (:~o) (2.2) 

P r o o f .  Let us return to (1.10), where the volume I Sso(:~0) ] of the sphere SSo(ZO) 
of diameter 60 can be computed by Jacobi's formula [4]; as a result (1.10) takes the form 
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Pt ~ h (t, 60, a, to), a ~ Ss0 (2o) (2.3) 

Then it is easy to complete  the proof o f  the theorem by keeping (2.2),  as well as (1.7),  
(1 .8)  and (2. 3) in mind. 

N o t e  1 .  The quantity Pt on the left-hand side of  (2. 3) characterizes the error in 
the determination of the state of system (1.1)  at the instant t ,  caused by the error 60 
with which its initial state is specified, while h (t, 60, ¢, to) in (2 .3)  characterizes 
the min imum level  of  this error. 

N o t e  2 .  The use of  inequality (2 .2)  for the detection of  completely  labile t ra jec-  
tories of  system (1 .1)  presupposes that the function L ( t ,  x0, to) either can be c o m -  
puted exact ly or is effect ively bounded from below. 

3,  Let m consider the mathemat ica l  model of  the struggle for existence between 
two biological species [5], taken as the original one in [6] and relating to a broad class 
of so-called models of evolution ['7] 

d~ dx2 
dt : xi (st - -  Tlx.z), T =' - -  := (e~ - -  ~'~xl), t ~ 0 (3.1) 

Here ex, ca, y~, ¥= are positive numbers ; z z, x~ are the coordinates of  the vector z == 

(zz, xt) ~ R='*, Zo : (:m, xto) is the state of  system (3 .1)  at the instant t : 0; Vo == 
{ z o : 0 < Z z o , = s 0 < ~ } ,  ~ > 0  i s a n u m b e r .  

Let us show that the trajectories of  system (3.1),  starting off  on Vo at t : 0 are c o m -  
pletely labile relative to 170. In order to make use of  Theorem 2 it is necessary to find 
the quantity t 

L (t, zo, O) m .~ (el - -  Tl=~ (~) - -  e~. + To.z1 (~')) d'c (3.2) 
0 

:~ (t) =, h (t, ~ ,  0),  zt  (t) .,= £ (t, zo, 0), t ~ 0,  ::0 ~ v0 

Here  =, (t), ~ (t) is the so lut ion  o f  the s y s t e m  ( 3 . 1 ) .  With due regard to ( 3 . 1 ) ,  the 
integrand in (3. 2) can be represented as 

(81 - -  ¥1~1 (t) - -  ~1 "Jff ~1:1 (t))  dt  : d : l / :  1 + dagt/g 2 (3.3) 

Substitution of (3.3) into (3.2) yields 

L (t,.zo, O)=  In "l :ca zlOZ~(t)x~ (t)[" (3. 4) 

On the phase plane Rx" we construct a circle of  diameter  6o ~ 

~ zo / Z,o m -~ i \~. m - a - I  ,~ m - - i  , S~°(%) 

l ~ t ,  r e > l ,  O < a ~ l m ~ / ( m - - i )  

Using (3.4) ,  fzom formula (2 .1)  for n = 2 we find 

h (t, 5o, zo, 0) = 0.8862269 . . .  m lm-- i ct I /x (t, 

Let 

=o, 0) f~ (t, zo, 0) I 
XloZto I 

b = (b l, b,,) be any point of  38, (~0) From (3. 5) it foUows that 

(3.6) 

(3, ') 
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The number  a ~ 0 in (3. 5) can be chosen so smal l  that  on ~ e  plane R~ the singular 
point .(e~ / ~,, ~i / Y~) ~ ,5~, (SoL 

It is known from [5] that EqSo (3.1) have a unique singular point (~ / y.,, el / 7~) in 
the quadrant zl ~- O, z 2 > 0 ,  which is a center,  the phase curves of  system (3 .1)  in this 
quadrant are al l  closed, and the t ime  var ia t ion of the phase coordinates zl, z~  takes 
place  by a periodic law. Consequently,  all  the phase curves of  system (3. I )  should sur- 
round the point (~  / 72, el / VI) in the quadrant z I > O, ¢2 > 0 (otherwise, by the Bend- 
ixsou theorem [8] there would be a singular point other than (e., / ,j~, 81 / 7~) in this 
quadrant) .  Therefore ,  for each  point z o ~ Ss. (So) there exists an instant t~ = t~ (Xo), 
t) ~ t I < oo, such that 

/~ (h, Zo, O) ~> ~, / ,;:, /.. (h, Zo, 0) > 81 / ~'1 (3.8) 

The  functions /1 (t, Zo, to), /, (t, zo, to). depend continuously on Zo ~ Vo, therefore, for 
any fixed a > o there exists an integer  l o = lo (~) ~ I, depending on u, such chat for 
any c i rc le  (3. 5), where l > / l o  = lo (~) the inequali t ies (3. 8) are fulfilled for any point 
xo = b ---- (bt, b,) ~ Ss, ( so l  Consequently.  from (8. 8) we have 

/t (tl, b, 0)/., (tt, b, 0) ~> elaz/-Cly2 (3.9) 

Then,  with due regard to (3.7) ,  (3. 9). from (3 .6)  we obtain 
m81e2 t 

h (h, 50, b, 0) ~ 0.886"-269... (m - -  i) 7172 a 

Consequently,  whatever  the number  e > 0, by choosing c~ > 0 sufficiently smal l  we 
can always ensm'e the condit ion h (h, 60, b, to) ~ ~ for any point b = (b~, b~) ~ $~, 
(s o) . According to Theorem 2 .1 ,  this signifies that  trajectories C ={(]1 (t, z o, 0), /,z {t, 
xo, 0)J, t ~ 0, z0 E Vo} are comple te ly  labile  re la t ive  to Y o. It  is necessary to note 
also that  the d iamete r  and the coordinams of the center  of  the circle  (3. 5) are arbi t ra-  
rily smal l  as a - -  0, therefore,  the origin of  the phase plane/~=~ is a point of  conden-  
sation of those pairs of  points {(zoh, (zo)~} the distance between which at  the instant 
t = 0 is arbitrari ly small ,  whereas the distance between the phase trajectories of  system 
(3. I), issuing from each pair of these points, becomes larger than any ~ ~ 0 as t inorea- 

ses, 

4 o Let all  the conditions of  Theorem 1 be fulfilled, except ing condit ion (1 .3)  which 
we do not take into account  here.  We fix a certain instant on ~ = {t: t o ~ t ~ t ,  
We consider the set Vt -~- Tt (Vo), Vo ~ J ~  and the sphere S~t (:~) = {x : IIx 

1 :r[I ~ ~ t }  with center  at  any point ;~ ~ V~, where the number  6~ ~ 0 is chosen 
such tha~ S ~  (.~) ~ Vt. By virtue of the assumptions made,  for each  point x ~_ ~s  t 
(x) there e x i t s  a unique image  xo -~ T7 ~ (x), where T~ -~ : x o ~ - ]  (to, x,  t), 
to ~ t <  t . ,  x ~  I ' ~ .  Let S~. be the image  of the sphere S~ t (x),S~o = T~ -a 
(S~, (~')), where ~0 is me diameter of set S~o. we denote 

F (t, ~o, to) = l im~- .o  (80/6~) (4.1) 

where -~o = ] (to, .L t), ~ ~ is the d iamete r  of  sphere S ~  (~), 5o is the d iameter  
of set ,~'So. The  quantity F (t, :~o, to) character izes  how strongly the trajectories of  
system (1.1) ,  starting off  in a neighborhood of  point Xo, condense i. e come  together  
by the instant  t .  The larger the ~t (t, £o, to), the higher the degree of  condensabil i ty 
of the trajectories.  
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Let us find a lower bound for bt (t, xo, to),where xo is any point of V o. To do this, 

by analogy with (1o 5) we can write 

[ S~.I = [ J  (t, / (t, a ,  %))1-1 [ So t (~) ] (4.2)  

where a = a (t) is some point of  S 5°. I f  we rake (1.2) .  (1 .4 )  into comiderat ion,  then 

( 4 . 2 )  can be rewritten as 
IS8.[ ----- I S h  (~) [ e x p  [ - -  L (t, a,  to)] (4.3) 

we  keep  in mind that  (60) 4 ~ I Ss , [ ;  we compute  the volume [$5, (2) I by yacobi 's  
formula [4]; then. with due regard to (4.  I ) ,  from (4. 3) we obtain the es t imate  

tt (t, xo, to) ~ ( ~ )  ¢'- ')j~ (n , ! ) -~ , "  e x p  [ - L (t, xo, to) / n] 

t0 ,  n ---- 2, 4, 6 . . . .  (4.4) 
x----~ i ,  n - ~ 3 , 5 , 7  . . . .  

From (4. 4) it follows that  i f  

L ( t ,  xo, to)- '*" - - c ~  as t ~ t .  (4 .5 )  

then 
(t, xo, t o ) ~  as t - , - t .  (4 .6 )  

Consequently.  one and the same quantity L (t, xo, to) characmrt~es,  on the one hand. 
the comple te  labil i ty of  the t~ajectorles of  system (1.1) .  when L (t,  xo, to) ~ co 
(Theorems I .  2). and on ~ e  other hand, the ~ c t e d  condengability of  the t ra jec to-  
ries of  system (1.1) .  when L (t,  xo, to) --*- - -  oo ( re la t iom (4: 5). (4. 6 ) ) .  Taking into 
consideration the singular role that  the quantity L (t, xo, to) plays in all  the preced-  
ing discussions, we will  ca l l  the quantity L (t, x 0, to) the degree of labil i ty of  sys- 

t em (I. 1). 

5.  Let m comider  the mot ion of a spacecraf t  at  its power-off  entry into a planetary 
atmosphere (passive descent).  Under specified assumptions, the equations of  planar 
mot ion of  the spacec~af~ can be written as [9] 

dH dO C~ A(z,I-I) [ i ] 
dz' = A (.., H) O, (to - -  z) dz - -  Cx vo - -  -'- .... g - - " 7 "  (to - -  z)~ 

A ( z , H ) = [ ~ ( v o - - z ) e - " S ]  -1, 0 ~ z < v 0 - - v  (5.i) 

Here,  in (obviously unenent ia l )  contrast  to [9] we have  chmen as the independent  var i -  
able.  instead of v .  the scalar quantity z ~ vo - -  v, monomnomly  increasing with r ime,  
where v o = v (to) is the veloci ty  of  the spacecraf t  a t  the ini t ial  instant t == t o, v == v (t) 
is the ve loc i ty  of  the spacecraft  at the c tment  instant t ; the values of  s and t are in 
one- to -one  co r t~pondence .  As regards the other notat ion in ( 5 . 1 ) ,  H is t ~  alt i tude 
of the spacecraf t  above the planet ' s  surface, 0 is the angle of  Incl inat ion of the craft ' s  
~a jec tosy  re la t ive  to the local  horizon plane.  ~ is the logar i thmic  gradient of  the 
a tmosphere ' s  demlty ,  S and m are the character is t ic  c rcu - sec r iona l  area and the mass 
of  the craft ,  c v and ¢:c are the lifz and drag ccefflcienes ( ' ) ,  respect ive ly ,  p (0) is the 

H 

• ) E d i t o r ' s  N o t e .  See footnote on page 39. 
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atmosphere density at altitude H -~ O, r is the planet's radius, g is the acceleration 
due to gravity. 

The actual trajectories of the spacecraft can differ from the calculated ones for a 
number of reasons whose analysis leads to the dispersion l~oblem. One of the reasons 
for the dispersion of the trajectories is the perturbation of the initial state of system 
(5.1), H (to) ----- H o, 0 (to) ~ e o. Let us estimate the condensahility of the trajectories 
of system (5.1) with the aid of the numerical measure (4.1)  of the condensability of 
the trajectories and of the relation (4. 4). To do this we first compute the degree of 
lability of system (5.1) by formula (1.2).  Keeping in mind the first equation in (5 .1) ,  
the integral to be computed can be reduced to a quadrature, taken in finite form 

~ - v  z 

;. ~ A I--, ~ (z)) 0 (,) d = = ~.I d ~  (r) = ~ [~  (:; Ho, ~) - Hol (5.2) L (-; Ho, 0n; 0) 
0 0 

Here H (z) ---- H (z; Ho, 0o) Is the altitude corresponding to the current value of z. I f  
H (z; He, 0o) < H~, then L (.; H0, Co; 0) <: O. According to the meaning of the quan- 
tity ~ (z; H 0, 0o; 0) and to the bound (4. 4) this signifies that the very fact of the craft 's 
descent in the planetary atmosphere renders a stabilizing effect which consists in a les- 
sening of the perturbations of the trajectories of system (5.1), caused by the perturbations 
of its initial state (H o, 00), From (5.2) it follows that this stabilizing effect is the 
greater, the greater is the density gradient ~, whereas the degree of lability of system 
(5.1), L (:: Ho, 0o; 0) does not depend upon the form of the trajectories of system 
(5.1) but is determined solely by altitude difference H (z, H0, 0o) - -  H o. For example,  
let H (z; Ho, eo) - -  Ho--  80 kin. For a descent onto the Earth, k ~ (t/:~7o)m-L In this 
case L (z; Ho, t)0; 0) ~ l i . i 6 ,  and by formula (4.4) for a ----- 2 we have ~ (z: Ho, e0; 
o) ~ 235. Returning to ( I .  9.), (4.4)  and (5.1), we can note that there exists an additional 
possibility of influencing the quantity L (z; Ho, Oo; 0) and --he lower bouud for ~ (z: Ho, 

O0; 0), which consists of using as control functions the lifr-drag ratio c v / c x  and the 
drag coefficient % ( ' )  as functions o f / /  and e. 

6 .  Mathematical  models of control processes often are given by equations of form 
(1.1) in which 

),- (t. x) = F (t, x, u (t)) (6.1) 

Here F ( t ,  x, u) is a function of t , x ,  u, u = ( t  h . . . . .  ur) is a vector in a real r 
dimensional linear normed space R .  ~, u (t) is the control (the control function): 

When experimenting with a concrete material  object it is often required to bring out 
new ixoperties of this object, different from the pcopertles of its model (1.1), (6.1), as 
well as to define more precisely the boundary and the region of applicability of this 
m o d e l  By forcing the growth of the degree of lability of system (1.1), (6.1) with the 
aid of specially selected controls and by using precisely these controls when experimen- 
ting with the concrete material  object, we can hope to establish in the quickest way the 
difference between the behavior of this object and of its m o d e l  

Let each of the controls u ----- u (t), t ~ to, belonging to a certain admissible con- 
trol set U ----- {u (t), t ~ t0) }, ensure the fulfillment of all  the conditiom of Theorem 

• ) E d i t o r ' s  N o t e .  English symbols for the lift-drag ratio, drag coefficient and lift 
coefficient are as follows: C L/Co, Crj and C.. respectively. 
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1 on the function X (t, x) excepting condition (3.1) which we do not take into accout 
here. Among the controls in V we can choose a control such that the system (1.1),(6.1) 
achieves a given magnitude of the de~ee  of lability L (tl, xo, to) = B: where B 
is a specified number, in the minimal t ime t+ - -  t0, where 

t+ = min.( , )e~-t l  (6.2) 

It is obviom that the desired control u = uo (t), t o ~ t < t+ can he found from the 

functional equation m t n u ( ~ V t ,  n 

i ~ a ): ( z , / (T ,  Xo, to))dr  = B (6.3) 
" ~ - - X i  " i : l  

Here the function x (t) == ] (t, x o, to), t o ~ t <~ t+, X o ~ V o satisfies system (1.1), 
(6.1) in the presence of the given x o ~ V o and of the desired u =:- u o (t), t o 

t ~ t + .  
All the preceding discussions can be extended to the case of piecewise-smooth con- 

trois by the method of matching. 
If  the values of the control function belong to a compact  clostrre in / ~ r  the solu- 

tion of the functional equation (6.2) can be reduced to the known time optimal prob- 
lem [10] with an additional inm~ral constraint of the isoparimetric type. Indeed. the 
solution of problem (6.2) is equivalent to the problem of minimizing the integral 

tl 

tl = S d r  ~ to 
to 

subject to two constraints: the differential one (1.1).  (6 .1)(under  the condition that the 
initial state x (to) ---- xo belongs to set Vo, while the control u = uo (t), t ~ to , 
belongs to set U)' and the integral one (the isoperlmetric condition) 

11 n 

Xo, to) )er= 8 
t ,  i m l  O~i  

The author thanks V. V. Rumiantmv for valuable advice and remarks, as well as a l l the  
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discussing this work. 
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A class of exact solutions of a system of equazions of elecU~hydrodynamics is 
studied for which the electric current is directed along streamlines of the hydro- 
dynamic flow. In the  two-dimensional case ~he solution is written down expli-  
citly. It is shown how to construct other exact  solutions for which the collinear- 
ity condition of the electric current density and velocity v e c ~ s  has not been 
satisfied, by using the solutiom obtained, as an iUmtration, an exact  solution 
for the flow of a unipolarly charged fluid in a channel with elee~ode-walls  is 
constructed. It is shown that for a particular kind of hydrodynamic eddy current 
the solution of the two-dimensional system of equations can be reduced in some 
cases to finding the solution of a system of ordinary differential equations. 

I ,  Let us examine the stationary flow of a unipolarly charged fluid. The parameter 
of the electrohydrodynamic interaction is assumed infinitesimal, A hydrodynamic 
srceam of ideal incompressible homogeneom fluid has the potential V* = - -  g rad  ~ * .  
Ohm's law has the form j* _ q* (V* -~ bE*) ,  where b = cons t  is the mobil i ty .  
Let us introduce dimemionle:s quantities by meam of formulas 

x = l ~ , y  = l q ,  z = l~ ,  ¢~* = ¢~, ~ *  = u o l ~  

q .  = ' ~ g 7  q e " ' n  (1.1) 

where q~* is the electric field potential E* ----- - -  g rad  ~*.  Using the potent ia l i~ of 
the e i e c m c  field and the velocity field, let  us introduce the total potential ~---~ (P-~-q). 
The equatiom of electrohydrodynamics are [1] 

A ~  = 0 ,  d i v ( q g r a d  X) - - 0 ,  AX = - - q  ( t . 2 )  


